合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 熱力學模型計算MgO-B2O3-SiO2-CaOAl2O3富硼渣表面張力(三)
> 兩親性碳點CDS表面活性劑濃度、膠束對硅酸鹽溶液潤滑性能的影響(一)
> ?達因值(表面張力系數)對材料表面性能的影響
> 過硫酸鉀、K2S2O8對壓裂液破膠性能與表面張力的影響——結果與討論、結論
> 應用單分子層技術分析磷脂酶與不同磷脂底物特異水解性能:摘要、介紹、材料和方法
> JMP軟件定制熟化環境的濕度對光伏背板耐候層表面張力影響(一)
> 懸浮床加氫工藝條件下界面張力、油品黏度模擬近似計算(二)
> 微納米顆粒三相泡沫體系的溶液特性、界面性能和驅油效果(二)
> 溫度、鹽對辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(一)
> 表面張力變化對含氣泡液體射流破裂的影響
煙道氣?稠油系統表面張力變化規律研究
來源:中南大學學報(自然科學版) 瀏覽 677 次 發布時間:2023-08-10
采用軸對稱液滴形狀分析(ADSA)方法,測定煙道氣?稠油、正己烷?稠油、煙道氣+正己烷?稠油系統表面張力的變化規律,分析蒸汽輔助重力泄油(SAGD)過程中注入非凝析氣體和溶劑后對降低稠油表面張力的能力。研究結果表明:在一定溫度下,稠油的表面張力隨著氣體壓力的增加而減小,在一定壓力下,煙道氣?稠油和正己烷?稠油表面張力的變化規律則相反。在相同的溫度和壓力下,與煙道氣相比,正己烷降低稠油表面張力的作用更顯著。同時,實驗測得的煙道氣?稠油表面張力與N2?稠油表面張力和CO2?稠油表面張力的線性插值擬合性較好。
研究表明,降低稠油的表面張力是SAGP技術中注入的非凝析氣體和ES-SAGD技術中注入的少量氣化溶劑改善SAGD開發效果的作用機理之一。研究SAGP和ES-SAGD過程中的界面現象具有重要意義。氣體注入后,稠油的表面張力降低,在多孔介質中流動的毛管力和黏附力減小,油藏流體在重力作用下流入生產井被采出。
煙道氣?稠油系統表面張力變化規律
動態表面張力分析
由于煙道氣在原油中具有一定的溶解度,油滴形成后,煙道氣會向原油中擴散、溶解,一直持續到油滴被煙道氣飽和。為了檢測氣體向原油中溶解、擴散對表面張力的影響,對煙道氣?稠油系統的動態表面張力進行測定。圖1所示為120℃和4 MPa下測量的煙道氣?稠油動態表面張力,其中煙道氣組成為80%N2+20%CO2(摩爾分數),并與CO2?稠油和N2?稠油的表面張力進行對比。由圖1可以看出動態表面張力的變化可以分為2個階段:第1個階段為波動階段,在氣體擴散的初始階段,動態表面張力存在一定的波動,約100 s,說明氣體向稠油中擴散會持續一段時間;第2個階段為平衡階段,氣體?稠油的表面張力波動很小,幾乎是一個常數,在相同的溫度和壓力下,CO2?稠油的表面張力最小,N2?稠油的表面張力最大,煙道氣?稠油的表面張力介于二者之間,表1所示為前300 s稠油與不同氣體作用表面張力的實驗值。
1—煙道氣;2—CO2;3—N2
圖1 120℃和4 MPa下稠油動態表面張力變化圖
表1 前300 s稠油動態表面張力實驗值表
同溫度下煙道氣?稠油平衡表面張力變化曲線
靜態表面張力分析
為了研究溫度和壓力對煙道氣?稠油平衡表面張力的影響,分別在80,100和120℃下進行實驗,圖2所示為不同溫度下煙道氣?稠油平衡表面張力隨壓力變化曲線。由圖2可見:當氣體壓力從0.2 MPa升高到6 MPa,在80℃時,煙道氣?稠油表面張力由27.31 mN/m減小到23.53 mN/m,降低了13.84%;在100℃時,煙道氣?稠油表面張力由26.10 mN/m減小到22.26 mN/m,降低了14.71%;在120℃時,煙道氣?稠油表面張力由24.75 mN/m減小到21.75 mN/m,降低了12.12%。當溫度一定時,煙道氣?稠油系統的平衡表面張力隨著壓力的增大而減小,并呈較好的線性關系。這是因為溫度一定時,壓力增大,煙道氣在稠油中的溶解度增大,使得平衡表面張力減小。當壓力一定時,煙道氣?稠油系統的平衡表面張力隨溫度的升高而減小。這是因為煙道氣的主要成分是N2,N2在稠油中的溶解度隨著溫度升高而增大。